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Good experimental design is important in many studies of analytical

and other chemical processes. Complete factorial designs, which study

all the factors (experimental variables) a � ecting the system response,

using at least two levels (values) for each factor, can give rise to an

unacceptably large number of trial experiments. This is because even



times at the higher level and four times at the lower. The
e� ect of each factor is then readily determined from the
expression:

2[
P

(y+) �
P

(y� )]/N

where N is the total number of experiments, eight in this case.
The (y+) terms are the responses when a given factor is at its
high level, and the (y� ) terms re� ect the responses for that
factor set to its low level. It can be shown that the e� ects for the
main factors determined in this way are not confounded with
each other (see AMCTB 36).

An example

In this example the experimental output y is the � uorescence
intensity (arbitrary units) of a single sample material, measured
using four di � erent spectrometer excitation and emission
spectral bandwidths and wavelengths, factors A–D. We need an
8-experiment PB design, so there are three dummy factors,
labelled d1, d2, and d3, included alternately in Table 1.

From these results we can see that, for example, the e� ect of
factor A is 0.25(10 + 9 + 10 + 8� 9 � 7 � 7 � 7) ¼ +1.75. Similarly
it can be shown that the e� ects of B, C, and D are +0.25,� 1.25
and +0.75 respectively. Clearly a negative e� ect, as obtained
here with factor C, means that moving that factor from a high to
low value increasesthe system response (� uorescence intensity
in this case) rather than decreasing it. The e� ects of the dummy
factors d1, d2 and d3, are found by the same method to be
+0.75, +0.25, and +0.25 respectively.

How signi � cant is each factor?

Simple ANOVA-related calculations will enable us to assess the
signi � cance of the “real” factors. For each factor the sum of
squares (SS) in a two-level design is given by:

SS ¼ N � (estimated effect)2/4

The sums of squares for A, B, C, and D are thus 6.125,
0.125, 3.125, and 1.125 respectively. Each of these sums of
squares has just one degree of freedom, so their mean square
values (i.e., variances) are the same as the SS ones. The sums
of squares for the dummy factors d1, d2, and d3 are similarly
found to be 1.125, 0.125, and 0.125 respectively. The mean
sum of squares for these estimates of the random measure-
ment errors is thus 0.458: this has three degrees of freedom as
there are three dummy variables. Each of the individual
factors A–D can now be compared with this estimated random
error using a one-tailed F-test at the p ¼ 0.05 signi� cance
level. So for factor A the value ofF is 6.125/0.458¼ 13.37. The
critical value of F1,3 at p ¼ 0.05 is 10.13, so we can conclude
that the e� ect of changing the level of factor A is signi � cant.
The same approach shows that factors B, C and D seem to
have no signi� cant e� ect. Such calculations are in practice
performed using suitable so � ware such as Minitab� , so once
the trial experiments are complete the conclusions can be
drawn at once.

Plackett –Burman in action

PB designs have been used in an enormous variety of chemical
and biochemical studies, synthetic as well as analytical. Spec-
troscopy, electrochemistry and chromatography have all
proved to be fertile � elds for their application in measurement
science. In practice, designs with 12 and 20 runs seem to have
been most popular. This may be because PB designs where 4n
is a power of 2 [i.e. n ¼ 2, 4, 8 etc.] are exactly equivalent to
some other fractional factorial designs, so PB methods confer
no advantage. Moreover performing (for example) 12 experi-
ments rather than 8 will provide extra dummy factors, hence
better estimates of the measurement error and of the possible
signi � cance of the real factors. The potential for further
applications of PB designs is clear, especially in the develop-
ment of new or improved analytical methods. Evolutionary
methods such as simplex optimisation can be used to � nd the
best combination of factor levels, but when an optimum set of

Table 1

EXPERIMENT

FACTORS

Result yA d1 B d2 C d3 D

1 + � � + � + + 10
2 + + � � + � + 9
3 + + + � � + � 10
4 � + + + � � + 9
5 + � + + + � � 8
6 � + � + + + � 7
7 � � + � + + + 7
8 � � � � � � � 7

Effect +1.75 +0.75 +0.25 +0.25 � 1.25 +0.25 +0.75 *

SS 6.125 1.125 0.125 0.125 3.125 0.125 1.125 *

F-value 13.4 * 0.3 * 6.8 * 2.5 *
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conditions has been found in this way we still need to know
whether the analytical results are unduly sensitive to small
changes in any of the factors.

However, the popularity of PB methods comes with a
signi � cant health warning. PB designs are ideal for screening
purposes in systems where it is desired to identify a few main
factors a� ecting the outcome, and where interactions are not
signicant. Theory shows that while the main factors in a PB
design are not confounded, there is strong confounding
between the main factors and any two-factor interactions that
may arise. So if there are signi� cant interactions, PB methods
could provide misleading results. In recent years much atten-
tion has been given to diagnostic approaches for revealing
interactions in PB designs. These are beyond the scope of this
paper; but it is worth noting that if dummy factors seem to have

unexpectedly high e� ect values, this might be a sign that
interactions are indeed present.

This Technical Brief, draed by J.N. Miller, was prepared for
the Analytical Methods Committee by the Statistical
Subcommittee.

This journal is ª The Royal Society of Chemistry 2013 Anal. Methods

AMC Technical Briefs Analytical Methods

D
ow

nl
oa

de
d 

on
 1

4 
M

ar
ch

 2
01

3
P

ub
lis

he
d 

on
 1

1 
M

ar
ch

 2
01

3 
on

 h
ttp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/C

3A
Y

90
02

0G
View Article Online

http://dx.doi.org/10.1039/c3ay90020g

	Experimental design and optimisation (4): Placketttnqh_x2013Burman designs
	Experimental design and optimisation (4): Placketttnqh_x2013Burman designs
	Experimental design and optimisation (4): Placketttnqh_x2013Burman designs
	Experimental design and optimisation (4): Placketttnqh_x2013Burman designs
	Experimental design and optimisation (4): Placketttnqh_x2013Burman designs


