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There is now abundant evidence that we analytical chemists are

tending to underestimate the uncertainty of our measurements.

There are two main underlying reasons for this. One reason is

technical: it is easy to overlook important contributions to uncer-

tainty, so the models used to estimate uncertainty may be incom-

plete. The second reason may be psychological: there may be an

unconscious selection bias in the information we use to assess

uncertainty. What should we do about this missing, ‘dark’,

uncertainty?
A recent meta-analysis1 has reviewed available studies of repor-

ted uncertainties in inter-laboratory exercises and examined

additional examples of metrology comparisons in analytical

chemistry. Although the number of such studies is modest, all

those reviewed show evidence that uncertainty is more often

underestimated than overestimated – that is, differences among

laboratories are usually greater than the reported uncertainties
would suggest. As an example of this common occurrence, Fig. 1

shows the results, with their reported uncertainties, for lead in

tuna, produced by participants in IMEP 20. (IMEP is the

International Measurement Evaluation Programme organised

by the European Institute for Reference Materials and

Measurements (IRMM), Geel, Belgium). Fig. 2 shows the

observed distribution of the sorted results, together with boot-

strapped estimates of the expected distribution had the uncer-

tainty estimates been correct. On the basis of the reported

uncertainties, the between-laboratory standard deviation should

be 0.031 ppm: the observed robust value (that is, outliers dis-

counted) was 0.122 ppm.

This kind of occurrence is neither especially novel nor peculiar to

analytical chemistry, as we can see from the classic 1972 paper by

Youden2 on estimates of the velocity of light. But why now, two

decades after the publication of the Guide to the Expression of

Uncertainty inmeasurement (‘‘theGUM’’),3 should this still happen?
GUM

The GUM provided three things. First, it provided some basic

concepts, such as the concept of measurement uncertainty itself

as a summary figure that includes all possible effects, random
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these ‘standard uncertainties’ should be combined using the

established rules for combining variances; and the then quite

radical idea that uncertainties for both random and systematic

effects should be treated identically, no matter whether they

were estimated from statistical analysis (‘‘Type A’’) or from

other sources (‘‘Type B’’) such as calibration certificates,

manufacturer specifications or professional judgement. Finally,

the GUM provided a particular approach to the combination

of uncertainties, based on an equation (the ‘measurement

model’) that was assumed to include all known significant

effects on the measurement result. This particular methodology

has been described as the ‘bottom up’ approach because of its

focus on building up an uncertainty budget from individual

parts.
Building on GUM

Since the publication of the GUM, other approaches have

become available that respect the same principles but use alter-

native combination methods or simpler models. In particular, the
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every individual contribution through to the use of a much

simpler (if less informative) summary figure of performance.

And indeed both approaches are widely used in practice. But

does either of these extremes guarantee an accurately

estimated uncertainty?

Two schools of thought

The measurement community often seems polarised towards one

or other of two extreme points of view.

� The ‘bottom-uppers’ or ‘splitters’ believe that the decon-

struction procedure should be exhaustive, continued to provide a

complicated complete ‘model’ of the procedure. ‘Splitters’ assert

(correctly in most instances) that reproducibility standard devi-

ation tends to underestimate standard uncertainty because inter

alia the effects of method bias are not accounted for. The issue of

traceability is also raised: how is the outcome traceable to the SI?

� The ‘top-downers’ or ‘lumpers’ believe that deconstruction

should be terminated at the earliest possible point that gives rise

to a reasonable estimate of uncertainty. The extreme version of

the ‘lumper’ approach is simply to use reproducibility standard

deviation (obtained by replication of the entire procedure in

different laboratories) as their estimate of standard uncertainty.

‘Lumpers’ take the view (again correctly in most instances) that

analytical procedures involve chemical interactions so numerous

and complex that it is usually impossible to build a comprehen-

sive model. There are both hidden influences on the result and

unknown interactions between overt influences. The outcome is

‘dark uncertainty’,1 present in the result of the measurement but

not visible in the uncertainty budget. However, all of the effects,

known and unknown (but excluding method bias), will be taken

into account in reproducibility precision, because each labora-

tory using the procedure will explore the variable space differ-

ently and more-or-less at random. Because of this, dark

uncertainty will be manifest in the reproducibility standard

deviation, even though we do not know its source.

Advocates of both of these views, then, claim that the alter-

native method tends to under-estimate uncertainty. But these

contentions are open to testing. A recent study of chemical

measurement8 has found a strong tendency for reproducibility

standard deviation to be greater than an estimate based on a

splitter approach, by a factor of about 1.5–2. And reproducibility

standard deviation itself is potentially too small: it does not

account for method bias. Dark uncertainty seems to be not only

ubiquitous but almost inevitable in chemical measurement. So

what should the analyst do?
Checking the reliability of uncertainty estimates

An obvious place to start is to check whether uncertainty esti-

mates are realistic. This is covered in another AMC Brief,9 so we

will not discuss it in detail here. But as a simple rule of thumb, an
uncertainty estimate much better than typical reproducibility

standard deviations sR found for relevant methods and test

materials shouldbe reviewedas suspect.Where no relevant studies

are available, relevant guidance (often regulatory) on acceptable

performance may be a useful guide. And in the food analysis

sector, Horwitz’s compilations have demonstrated a strong

general tendency for reproducibility standard deviation to be

about twice the associated repeatability standard deviation sr
(that is, sR z 2sr) so a general tendency for uncertainty estimates

in a laboratory to be less than 2sr should be regarded as suspect.

Where we should look, once we have identified a potential

problem, depends on the approach we have taken for our uncer-

tainty estimate. TheGUMassumes that we have an equation that

describes, quantitatively, all known, significant effects on the

result. This is one obvious place to look for missing uncertainties.
‘Bottom-up’ analysis from the model equation

In principle, we can apply the GUM approach to the equation in

the pesticide example above. A cursory examination might

suggest that chromatographic peak areas can be estimated with a

(relative) standard uncertainty of about 1%, that masses and

volumes can be determined with uncertainty near 0.1% and that

the stock solution uncertainty (which depends on further

weighings and volumetric operations) could be known with

relative uncertainty well under 1%. Combining these in the usual

way gives a relative standard uncertainty of the order of 1.5–2%.

We might see a repeatability relative standard deviation of 5–

15% on spiked test materials, so the estimated relative uncer-

tainty could be, perhaps, 10%.

This may be a fair summary of the combination of known

calibration uncertainties and observed repeatability – and indeed

confirms very nicely that we need take no further care over our
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perhaps some additional allowances. The critical questions

are then ‘‘which estimate of precision?’’ and ‘‘of which

measurement?’’

Precision can be estimated from any set of repeated observa-

tions, from re-presentation of an extract to an instrument, through

repetition of the complete measurement with no changes in cali-

brations, operator or equipment, to repetition by different labo-

ratories. But the estimates of precision we get under these different

conditions are very different, and we need to choose the right one.

In one study of uncertainties reported in proficiency tests, it was
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